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A model potential proposed by Huzinaga and his coworkers has been incorporated 
into the generalized coupling operator for open-shell SCF. With this modified 
operator, valence-only calculations have been performed on the ground and Rydberg 
excited states of the water molecule and compared with the ab initio SCF results 
previously reported. 
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1. Introduction 

In recent years, there have been many ab initio SCF calculations of polyatomic 
molecules [ 1]. In the closed-shell case, the Hartree-Fock-Roothaan SCF method is 
usually straightforward [2]. However, in the open-shell case, the situation becomes 
more complicated due to the existence of off-diagonal Lagrange multipliers which 
couple the open shells with the closed shells and other open shells [3, 4].  The 
principal problem is the elimination of the off-diagonal Lagrange multipliers in the 
Euler equations for the lineadzation of the equations to be solved. The coupling 
operator method developed by Roothaan [3] and extended by Huzinaga [4] has 
overcome this problem and the method has been applied to open-shell systems in 
both ab initio and semiempirical frameworks. 

The generalized form of the coupling operator method which satisfies the correct 
variational condition has recently been discussed by Huzinaga [5] and also by 
Hirao and Nakatsuji [6]. In a previous paper [7], the author has modified their oper- 
ator into a unique form taking into account the fact that the Hermitian conditions for 
the Lagrange multipliers among closed shells are automatically fulfilled and some ab 
initio applications for open-shell systems were reported [8]. 

As the number of electrons in the system increases, the ab initio method becomes 
expensive even for molecules of moderate size. Because of the computational problem 
associated with the ab initio method, attempts have been made to use the method 
of pseudo or model potential for valence-only calculations of polyatomic molecules 
[9-15]. The formalism of pseudopotential theory for one electron outside of a core 
is well known. The theory has recently been extended to the case in which the valence 
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electrons lie in a closed shell outside the inner cores in the molecule [13, 16], and 
applications to closed-shell polyatomic molecules have been reported [9-15]. Huzinaga 
and his coworkers gave a promising approach for the construction of the model potential 
in atoms and molecules by the use of Gaussian-type functions [14, 15]. The present 
work incorporates their model potential method into the unique coupling operator for 
open-shell SCF as previously given [7]. The open-shell states of polyatomic molecules 
can then be treated by valence-only calculations. 

This work outlines the necessary formalism and its application to the ground state and 
Rydberg excited states of the water molecule. 

2. Theoretical 

The molecular model potential method proposed by Huzinaga and his coworkers 
[14, 15] will be outlined to show the development of our formalism for open-shell 
states of polyatomic molecules. 

Consider a molecular system which contains N atoms with individual core regions 
numbered as C1, C2 . . . . .  C I , . . .  CN.  The Ith core, CI, contains N c x  electrons and 
the valence region of the whole molecular system contains N v electrons. 

The total wavefunction is now assumed to have the form; 

= M A p [ ~ c  1 ~ c 2 .  �9 �9 ~ c I .  �9 �9 ' ~ C N ~ v  ] 

where M is the normalization constant and Ap represents partial antisymmetrizer [17]. 
Here, all the core wavefunctions assume an antisymmetrized and normalized Slater 
determinant of doubly occupied atomic core orbitals, {r 

~ c I  ( 1 / N c f l )  1/2 det[r -. ci  = �9 ~ c x / 2 ( N c I  - l ) ~ ( N c i  - 1 )  

r  ; I = I ,  2 . . . . .  N 

For the system in which the valence manifold contains both closed and open shells, 
the wavefunction, ~v = ~ o ( { ~ } )  is generally a linear combination of  Slater determin- 
ants appropriately constructed to be an eigenfunction of symmetry and spin for the 
particular state under study. Here the {r are the molecular valence orbitals which 
are to be expanded in terms of the atomic valence orbitals brought in from the 
preparatory works on atoms. 

Assuming the following orthogonality conditions [14, 17] ; 

< I > : o 

<~[#> = 6 i ]  (l)  

the total energy of  the system can be wri t ten as [14, 15] : 

N N 

E=<q%l  Hollo>+ Z ECI + ~ EC1,CJ (2) 
I I>J 
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The third term has been approximated by the simple expression: 

(&-  Ncz)(Zs- Arcs) 
ECI, C y ~ R I  y 

Since the component wavefunctions for the cores are assumed to be the Slater determin- 
ants of doubly occupied atomic core orbitals, the second term in the total energy expres- 
sion is given by: 

NCI/2 NCI/2 

Ec~ = 2 2 ~ / +  E (2Jr/1 - Xfl5 
h: k,1 

Now the Hamiltonian, A v, in the first term of Eq. (2) can be written as: 

my ~i �89 Z i  N NCI/= l 
= + 2  E ( Z I ? - K ? ) +  - -  

Huzinaga and his coworkers [14, 15] have shown that the above Hu can be safely 
replaced by the model Hamiltonian, Hvrn. 

Nv Nv 1 

where 
N N NCI 

hm(i) = - � 8 9  ~ VCmI(rn) + E E BfZlckCI><g~kCr [ 
I I k 

with 

(3) 

VCrn I (rli) - Z1 - NcI [1 + A 1 exp { - ~  r~i } + A~ exp (-J24i}] 
rri 

With the above model Hamiltonian and qbv, the Hartree-Fock-Roothaan molecular 
valence orbitals, ( ~ } ,  for open-shell systems can be determined by the introduction 
of the generalized coupling operator method in the following manner. 

The valence energy 

Ev = < ~v l fivm [q~v) 

can be writtten in general as: 

E v : 2 2 H~i + 2 (2J~ - K~) + 2 vk [Hgk + 2 (2JiUk -- K~k)] 
iCC i , j ~C  k ~  0 i~C  

+ E (m~kffg~ - &~Kg~) (4) 
R, l E O  

where the occupied valence orbitals are now split into two classes; C and O for closed 
shell and open shell respectively [7]. akt and 3et are the coupling constants dependent 
on the state under study, v k is the fractional occupancy of the kth MO. 
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Hi E, J~ and K~. represent core, Coulomb and exchange integrals of the valence MO's 
respectively, and they are given as: 

1) _ _  O 1) Hii - (r ]hm 10} ) 

Kq - (@ IKj I~Y) 

with 

q(.)~(#) = f r~>)~yO')/r.4 dvv~(.) 

K~(U) 0(11) = f [-~ (~) O(v)/ru~ ] dvv{5~ (#) 

Here hm in the core integral is the one-electron part of the model Hamiltonian given in 
(3). 

The Euler equations derived from the valence energy variation are: 

F~lOY)=j~NejilO~); i~C 

and 

F v ~,o> = 
k 'Pk 

where 

FVe = h m + 

ezk I~>; k e O  
]EN 

and 

E ( 2 J y - X  D +  ~ - ~ [ 2 J g - K g ]  
i E C  k E O  

Fg = -2- hm + E (Z1y - I,:D + E (2~k~sy - & t K D  
i E C  l E O  

Here N is a manifold generated by a set of SCF occupied valence orbitals. The {eq} are 
the Lagrange multipliers which ensure the orthogonality of the valence orbitals. 

Projectors axe now defined corresponding to the above Fock operators: 

n~ =Pc +P~, iI~ :Pk +e .  

with 

& = E ICD<~YI, fk = ICD<Cgl 
i E C  

P . =  E 10g><0gJ 
u E V  

where the (qT} are the set of SCF virtual orbitals generating the manifold, V within 
the valence region.. 
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We can now build a unique coupling operator using the projectors defined above [7] : 

Rv = Roy + Tv 

with 

e o l) i) D i1 = IIcFcl'I c + 

and 

D O O  
HkFgHg 

k ~ O  

2 {(Xck : X k c ) i ~  - F ~ ) P k  + (Xkc - X~k)Pk(Fg  : F g ) P ~ }  
k E O  

k ~ l  

where the {)tO} are the arbitrary non-zero numbers with the condition: Xi] ~: Xli. They 
are chosen such that: 

Xkc -- Xek = 1, Xkl-- Xtk = l ( l > k )  

This choice has been found to give satisfactory convergence in the previous ab initio 
works [7, 8]. 

The term T v in the above coupling operator ensures the Hermiticity of the Lagrange 
multipliers during the SCF iterative process, and the coupling operator satisfies the 
correct variational condition for the valence orbital SCF. 

With this operator, the Hartree-Fock equations for valence-only calculations are reduced 
into a single pseudo-secular equation: 

With the above scheme, the open-shell states as well as the closed-shell state can be 
handled without the limitation on the number of open shells in the valence region. 
As an example, calculations on the ground and Rydberg excited states of the water 
molecule have been performed. 

3. Calculations 

The model potentials used for the cores in a molecule have to be brought in from the 
preparatory work on atoms. McWilliams and Huzinaga [15] adapted the so-called Pople 
4-31G Gaussian-type basis [18] for use with model potential calculations. 

In the present work, we have used their contraction scheme for the oxygen core and 
valence orbitals, together with the model potential parameters they have proposed (see 
Tables I and IV in Ref. [15] ). Pople's basis set with the scale factors, ~" = 1.27 and 
~" = 1.25 (in Pople's notation), has been used for the hydrogens [18]. The above basis 
set has been augmented with one set of diffuse s and p Gaussians on the oxygen atom 
with an exponent of 0.028 in order to get a better description of the Rydberg excited 
states [19]. 

The geometrical parameters used in this work are the same as those used in the previous 
ab initio study [7]. 
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4. Results and Discussion 

The water molecule has been studied in many calculations both in ab initio and semi- 
empirical frameworks due to its chemical importance [19]. In a previous paper, a unique 
generalized coupling operator for open-shell SCF has been discussed and applied to ab 
initio calculations of the ground and lower excited states of the water molecule [7]. 
The basis set used in the calculations was a double zeta basis set of contracted Gaussians 
from Dunning [20] and Huzinaga [21], augmented with two diffuse s functions and a 
set of diffuse p functions. The vertical transition energies obtained and the known 
experimental data [22] are reproduced in columns III and IV of the table. 

With the coupling operator scheme for the valence-only SCF discussed in the previous 
section, the valence energies, Ev's, have been optimized for the ground and the lower 
excited states. For the 1A 1 ground state, Ev = -23.9802 a.u. Energies for the vertical 
transitions from the ground state to the Rydberg excited states are calculated from the 
valence energy differences between the ground and the excited states, and they are 
shown in column I of the table. 

Using a basis set comparable to that used in the valence-only calculations, the ab initio 
SCF calculations were repeated. The Pople 4-31G basis [18] set augmented with a set 
of diffuse s and p functions on the oxygen atom with an exponent of 0.028 were used 
for the calculations. Only the hydrogen basis set was scaled [18], i.e., ~" = 1.27 and 
~'" = 1.25. These ab initio results, as seen in column II of the table, may then be 
directly compared with the results of the present valence-only calculations. 

McWilliams and Huzinaga studied the geometry and the orbital energies of the ground 
state of the water molecule with their model potential method [15]. The orbital energies 
they obtained from the valence-only calculation agree well with the ab initio results. It is 
seen from the table that the model potential they proposed is also able to reproduce the 
ab initio SCF results for the excited states of the water molecule as well. According to 
the above formulation, the attractive local model potential should be the same for the 
ground and excited states of the system, and by using the common model potential both 
for the ground and excited states, ab initjo SCF results for the excited states may be reprodu 
equally well. 

Table 1. SCF results 

I 
Present Valence- II IIl IV 
only Calculations Pople 4-31G Previous ab initio Experimental 

Total energy of 
1A 1 ground state (a.u.) 

Excitation energy (eV) 
1A 1 ~ 3B 1 5.92 
1A 1 ~ 1B 1 6.32 
1A 1 --+3A 2 8.05 

1A1 ~ 1A2 8.17 

-75.913 -76.003 

5.95 6.27 
6.33 6.70 
8.09 8.13 
8.20 8.26 

7.2 
7.4 

9.1 
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Comparison of  experimental  and computed transit ion energies shows that the theoreti- 
cal transit ion energies have lower values bo th  for ab initio and valence-only calculations. 
This t rend has been at t r ibuted to be the effect of  electron correlation [ 19],  which has 
not been taken into account in the present scheme. Recently, Freed discussed the possi- 
bil i ty for the inclusion of  the correlation effect in valence-only calculations [23],  which 
is beyond the scope of  the present work. 

Because of  the computat ional  problems associated with the ab initio calculations o f  
polyatomic  molecules, it is desirable to use a model potential  such as this in order to 
calculate the approximate excited states of  large molecules. The present scheme 
handles any number  o f  open shells together  with the closed shell and is expected to be 
very useful for the calculations of  open-shell states of  large organic molecules and tran- 

sition metal complexes. Applications o f  the present method to large polyatomic systems 
will be reported elsewhere. 
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